Lycée Midoun Mr :Ben Dahmane

Devoir de contrôle n° 1

Année scolaire : 2010/201

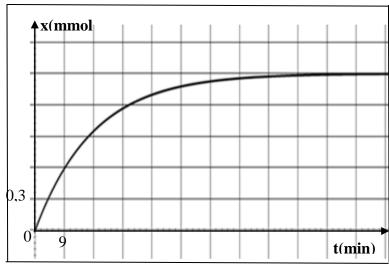
Durée: 2 h

4ème année Math

* Chimie: Cinétique chimique

❖ Physique : Condensateur et dipôle RC

Chimie

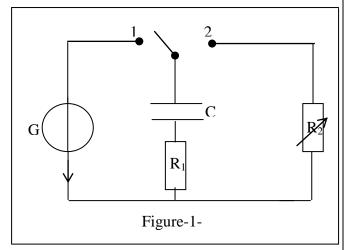

On se propose d'étudier la cinétique de la réaction d'oxydation des ions iodures \mathbf{I} par le peroxyde d'hydrogène $\mathbf{H_2O_2}$ en milieu acide symbolisée par l'équation :

$$H_2O_2 + 2 I^- + 2 H_3O^+ \rightarrow 4 H_2O + I_2$$

On mélange à la température θ un volume $V_1=10 \text{mL}$ d'une solution de peroxyde d'hydrogène de molarité C_1 , un volume $V_2=10 \text{ mL}$ d'une solution d'iodure de potassium KI de molarité $C_2=0.4 \text{ mol.L}^{-1}$ et un **excès** d'acide sulfurique (2 $H_3O^++SO_4^{-2}$).

Le volume de mélange réactionnel V=25mL demeure constant au cours de cette expérience.

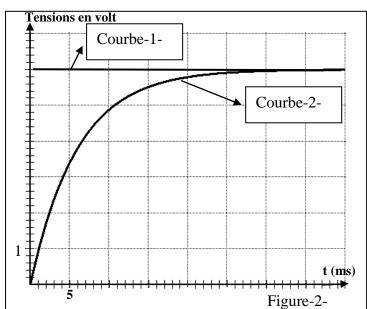
- $1^\circ)\,$ a- Comment évolue la coloration du milieu réactionnel au cours du temps. Justifier.
 - b- Préciser comment peut-on suivre l'évolution de cette réaction.
- 2°) Dresser le tableau descriptif d'évolution du système, en notant par n_0 : le nombre de mole initial de H_2O_2 .
- 3°) A l'aide d'un moyen approprié on suit l'évolution de l'avancement x de la réaction en fonction du temps. Les résultats expérimentaux ont permis de tracer la courbe de la figure ci-dessous.
 - a- Quel caractère de la réaction montre cette courbe.
 - b- Déterminer graphiquement l'avancement final x_f.
 - c- Montrer que l'eau oxygénée est le réactif limitant.
 - d- En déduire que n_0 = 1,5 10^{-3} mol. Calculer C_1 .
- 3°) a- Préciser, graphiquement, la valeur de l'avancement x₁ à t₁=9min.
- b- En déduire la molarité des ions iodure présents à cet instant.
- 4°) Déterminer la vitesse volumique moyenne de cette réaction entre les deux instants t= 0s et t'= 27min
- 5°) a- Définir la vitesse instantanée d'une réaction.
- b- Expliquer comment évolue cette vitesse au cours du temps. Préciser la cause de cette variation.
- c- Déterminer graphiquement sa valeur maximale.


 6°) Tracer l'allure de la courbe x=f(t), sur l'annexe, si l'expérience a été réalisée en présence d'un catalyseur.

Physique

Exercice n°1

On considère le circuit schématisé par la figure -1, comportant :


- * un condensateur de capacité C.
- * un résistor de résistance $R_1 = 1 \text{ k}\Omega$.
- *un résistor de résistance R2 réglable.
- * un générateur de tension de f.e.m E.
- * un commutateur.

1^{ère} Partie

<u>Le condensateur est initialement non chargé</u>, à l'instant de date t = 0s on place le commutateur sur la position (1).

- 1°) Indiquer le phénomène physique mis enjeu.
- 2°) En appliquant la loi des mailles :
 - a- Donner une relation entre u_C , u_{R1} et E avec u_C et u_{R1} sont les tensions électriques respectivement aux bornes du condensateur et le résistor R_1 .
 - b- En déduire l'équation différentielle vérifiée par u_C.
 - c- Vérifier que $\mathbf{u}_C = \mathbf{E} (1 \mathbf{e}^{-\mathbf{t}/R}_1 \cdot C)$ est une solution de cette équation.
- 3°) A l'aide d'un oscilloscope à mémoire on visualise la tension u_C aux bornes de condensateur et la tension E aux bornes de générateur. On obtient les courbes (1) et (2) de la figure-2.
 - a- Indiquer les connexions nécessaires avec oscilloscope.
 - b- Identifier les deux courbes. Justifier.
- 4°) Déterminer graphiquement :
 - a- La f.e.m E de générateur.
 - b- La constante de temps τ_1 puis déduire la valeur de C.

- c- La valeur de u_C à t = 10 ms puis déduire :
 - c₁- la valeur de la charge q du condensateur
- c₂ l'intensité du courant i dans le circuit.
- c₃. l'énergie stockée par le condensateur.
- 5°) On refait cette opération successivement avec différentes valeurs de E, C et R₁ après avoir déchargé rapidement le condensateur avant chaque opération. Les courbes obtenues sont données par la figure -3 de l'annexe.

Associer à chacune des expériences (a), (b), (c) et (d) le graphe correspondant. Justifier.

Expérience	(a)	(b)	(c)	(d)
R_1 (k Ω)	10	20	10	10
C (µF)	0,22	0,22	0,22	0,47
E (V)	6	3	3	6

2^{ème} Partie

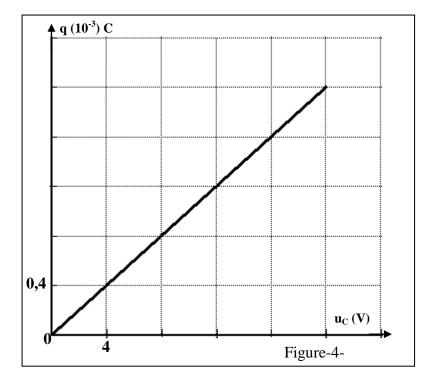
A une nouvelle origine des dates t=0s, on bascule le commutateur sur la position (2) et on règle la valeur de $R_2=R_1$.

- 1°) Préciser l'expression de la nouvelle constante du temps τ'.
- 2°) Comparer la durée Δt ' de la décharge à la durée Δt de la charge.
- 3°) Sachant qu'au cours de la décharge l'expression de $u_C = E e^{\frac{-\tau}{\tau}}$.
 - a- Donner l'expression i = f(t).
 - b-Représenter l'allure de la courbe qui traduit l'évolution de i en fonction du temps

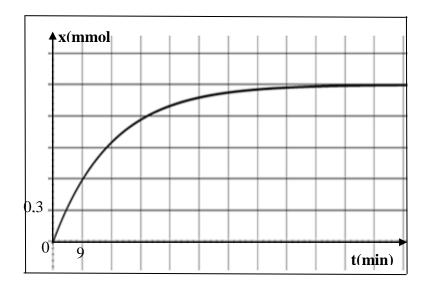
Exercice n°2

1°)

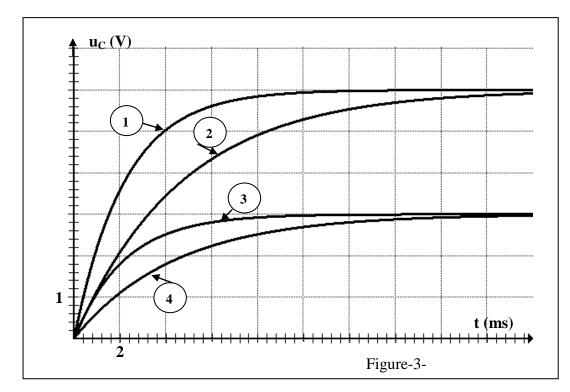
Un condensateur de capacité C sur le quel est inscrit $U_{max}=45~V$ et un résistor de résistance R en série sont branchés aux bornes d'un générateur débitant <u>un courant constant</u> $I=20~\mu A$. un voltmètre est branché aux bornes du condensateur. On mesure la tension u_C au cours du temps, on obtient le tableau suivant


t(s)	20	40	60	80	100
$U_{C}(V)$	4	8	12	16	20

- a- Donner la relation entre l'intensité I du courant qui traverse le condensateur et sa charge q à un instant t. (à t = 0s ; q = 0 C).
- b- Calculer q à t_1 =40s.


- 2°) Ces résultats de mesures ont permis de tracer la courbe ci-contre (figure-4).
 - a- Déterminer l'équation numérique de la courbe.
 - b- En déduire la capacité C du condensateur.

3°)


- a- Donner l'expression de la tension u_C en fonction de temps.
- b- A partir de quel instant il y a risque de détériorer le condensateur .

Nom.....Prénom.....n°.....

.....

Page 5